

Committed to Healing, Devoted To Caring

ISCHEMIC STROKE

Dr Mathew Pulicken MBBS MD IDCC Critical Care Consultant Apollo Bramwell Hospital

Causes of Death Top ten causes of death, all ages Mauritius, 2002					
	Deaths		Years of Life Lost		
Causes	(000)	(%)	(%)		
All causes	7	100	100		
Ischaemic heart disease	2	26	20		
Cerebrovascular disease	1	16	11		
Diabetes mellitus	0	5	4		
Nephritis and nephrosis	0	4	3		
Lower respiratory infections	0	3	3		
Hypertensive heart disease	0	3	2		
Cirrhosis of the liver	0	2	3		
Asthma	0	2	2		
Road traffic accidents	0	2	4		
Perinatal conditions	0	2	6		
Source: <u>Death and DALY estimates by cause, 2002</u> http://www.who.int/entity/healthinfo/statistics/bodgbddeathdalyestimates.xls					

2000 HOUSING AND POPULATION CENSUS REPUBLIC OF MAURITIUS

Diseases		2000
Heart diseases 2	23.4	29.8
Cerebrovascular diseases	13.1	16.2
Diabetes Mellitus	5.1	4.6
Nephritis, nephrotic syndrome and nephrosis	3.2	3.1
Pneumonia	3.5	2.9
Cirrhosis of liver, liver abcess, chronic liver idseases and its sequelae	2.3	2.9
Bronchitis (chronic & unspecified), emphysema and asthma	3.4	2.7
Hypertensive diseases	3.9	2.5
Senility without mention of psychosis	3.0	1.8
Septicaemia	1.0	1.1

1/ expressed as percentage over total deaths

2/ excluding "Acute rheumatic fever", "Hypertensive diseases"

and "Diseases of the pulmonary circulation"

Penumbra in Acute Stroke

Ischemic Stroke

- Pre Hospital Management
- Emergency Evaluation and Diagnosis
- Brain Imaging
- Supportive Care and Treatment of Acute Complications
- Treatment of Ischemic Stroke
 - Intravenous Thrombolysis
- Hospital and General Acute Treatment
- Acute Neurological Complications

Pre Hospital Management

Pre Hospital Management

- Identification
- Focused history and assessment
- Necessary stabilization
- Transport immediately

Cincinnati Prehospital Stroke Scale (Identification)

Facial Droop Normal: Abnormal:	(have patient smile) Both sides of face move equally One side of face does not move as well
Arm Drift Normal: Abnormal:	(have patient hold arms out for 10 seconds) Both arms move equally or not at all One arm drifts compared to the other, or does not move at all
Speech Normal: Abnormal:	(have patient speak a simple sentence) Patient uses correct words with no slurring Slurred or inappropriate words, or mute

Pre Hospital Management

Do's

- Manage ABCs
- Cardiac monitoring
- Intravenous access
- Oxygen (O2 sat<92%)
- Assess for hypoglycemia
- Nil per oral
- Rapid transport
- Alert receiving ED

Dont's

- Dextrose-containing fluids
- Hypotension/excessive blood pressure reduction
- Excessive intravenous fluids

Emergency Evaluation and Diagnosis

Evaluation

Identify patients with possible stroke
 Exclude stroke mimic

Conversion disorder	Lack of cranial nerve findings, neurological findings in a nonvascular distribution, inconsistent examination
Hypertensive encephalopathy	Headache, delirium, significant hypertension, cerebral edema
Complicated migraine	History of similar events, preceding aura, headache
Seizures	History of seizures, witnessed seizure activity, postictal period

Emergency Evaluation

History

- The time of symptom onset
- Risk factors
- Historical data related to eligibility for therapeutic interventions
- **Physical Examination**
- General physical examination
- Neurological examination (NIH Stroke Scale)

Diagnostic Tests

- Non contrast brain CT or brain MRI
- Blood glucose
- Serum electrolytes/renal function tests
- ECG
- Complete blood count
- Prothrombin time (INR)
- Activated partial thromboplastin time
- Oxygen saturation

Non–Contrast-Enhanced CT Scan of the Brain

- Criterion standard
- Door to CT time 25 minutes
- Door-to-interpretation time of 45 minutes

Multimodal CT

Multimodal MRI

- DWI very good ischemic lesions
- PWI measure relative blood flow in the brain

Non–Contrast-Enhanced CT Scan of the Brain

- criterion standard
- insensitive –

acute infarctions

small cortical or subcortical infarction

posterior fossa infarctions

- early signs of ischemic brain injury
- signs of early infarction > risk of hemorrhagic transformation
- Door to CT time 25 minutes
- door-to-interpretation time of 45 minutes

Hyperdense vessel sign

Multimodal CT

- Noncontrast CT
- Perfusion CT
 - Whole brain perfusion CT
 - Dynamic perfusion CT
- CT angiography

Multimodal MRI

- T1, T2 weighted & proton density relatively insensitive
- Diffusion weighted imaging very good ischemic lesions
- Perfusion weighted imaging measure relative blood flow in the brain
- diffusion-perfusion mismatch = ? ischemic penumbra
- MRI is as accurate as CT in detecting hyperacute intraparenchymal hemorrhage
- MR angiography

Other Vascular Imaging

- Transcranial Doppler ultrasonography
- Carotid duplex sonography
- Catheter angiography

Supportive Care and Treatment of Acute Complications

Airway, Ventilatory Support, and Oxygen

- Airway support and ventilatory assistance
 - Decreased consciousness
 - Bulbar dysfunction causing compromise of the airway
- Oxygen for hypoxic patients (Target saturation ≥ 92%)
- Most patients do not need supplemental oxygen

Temperature

- Fever during acute stroke is associated with poor neurological outcome
 - Increased metabolic demands
 - Enhanced release of neurotransmitters
 - Increased free radical production
- Sources of fever should be treated

Antipyretic medications - neurological outcomes??

Cardiac Monitoring

- Complications of CVA
 - Myocardial ischemia
 - Cardiac arrhythmias
- Infarctions of the right hemisphere (insula)
 - ↑risk of cardiac complications
- Cardiac enzymes/ ECG to R/O ischemia
- Cardiac monitoring for at least the first 24 hours
- Serious cardiac arrhythmia should be treated

Arterial Hypertension

- Controversial
- Data inconclusive / conflicting
- Cautious approach
- No Antihypertensives unless
 - SBP >220 mm Hg
 - DBP > 120 mm Hg

- Dead Tissue Tissue at risk
- □ lower blood pressure by ~15% during the first 24/h
- High blood pressure increased risk of hemorrhagic transformation in *patients treated with rtPA*

Treatment of Hypertension in patients eligible for rtPA

Target

- Systolic >185 mm Hg
- Diastolic >110 mm Hg

- □ Labetalol -10 to 20 mg IV over 1 to 2 minutes
- Nicardipine 5 mg/h IVI, titrate 2.5 mg/h every 5 15 minute
- If blood pressure remains > 185/110 mm Hg
 <u>do not administer rtPA</u>

Hypertension during and after treatment with rtPA

- Maintain Blood pressure level -
 - Systolic 180
 - Diastolic 105
- Labetalol 10 mg IV infusion at 2 to 8 mg/min
- Nicardipine infusion 5 mg/h Max 15 mg/h
- If BP not controlled sodium nitroprusside

Arterial Hypotension

- □ Unfavorable outcome if BP < 100/70 mm Hg</p>
- Volume replacement
- Correction of cardiac arrhythmia
- Vasopressors
- Hypoglycemia
- Hyperglycemia
 - Treat if > 180 mg/dL

Intravenous Thrombolysis

artery

Atherosclerotic clot

*ADAM

Intravenous Thrombolysis

- Timely thombolytic therapy is the most effective treatment for stroke
- Limited time frame
- Benefit of thrombolysis decreases over time

Intravenous Thrombolysis

- Major Questions before thrombolytic therapy
- Risks and benefits
- When is the treatment too late
- When is the use of thrombolytic agents too dangerous

History

- ATLANTIS
- ECASS 1
- ECASS 2
- No benefit with rtPA
- Used higher doses of rtPA
- Time window upto 6 hours
- No control of hypertension
- Much higher intracranial haemorrhage in the treatment group

NINDS STROKE TRIAL

The New England Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society

Volume 333

DECEMBER 14, 1995

Number 24

TISSUE PLASMINOGEN ACTIVATOR FOR ACUTE ISCHEMIC STROKE

THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE rt-PA STROKE STUDY GROUP*

NINDS STROKE TRIAL

- Treatment of acute ischemic stroke within 3 hours
- 624 patients randomly assigned
- IV alteplase 0.9 mg/Kg upto 90 mg/Kg
- □ 10 % as bolus- rest over 60 minutes
- Approximately half within 90 minutes
- Ten fold increase in ICH among alteplase group (6.4% versus 0.6%)
- Still mortality was not different among two groups
- At 3 months recovery better in patients given alteplase (38% versus 21%)

Intravenous Thrombolysis

- Benefits of IV thrombolytic therapy persisted on 1 year follow-up
- Patients treated within 90 minutes had better outcome
- □ FDA approved the use of intravenous rtPA in 1996
- European Medicines Evaluation Agency granted license for the use of rtPA- 2002

Intravenous Thrombolysis

- 3 hour time frame short ?
- Pooled data from studies analysed showed possibility of benefit till 4.5 hours

NNT for Benefit & Harm

Pooled analysis

ECASS 3

- 821 patients (18-80 yrs)
- Treatment from 3-4.5 hrs
- Had some extra exclusion criteria
 - Patients more than 80 yrs old
 - NIHSS score > 25
 - Combination of previous stroke and diabetes
 - Patients on anti-coagulants
- Initial stroke severity milder than NINDS trial

ECASS 3

- Better outcome with alteplase than placebo (52% vs 45%)
- No difference in mortality
- Symptomatic ICH more with alteplase (2.2% vs 0.2%) (7.9% vs 3.5% using NINDS criteria)
 In 2009 AHA expanded time window to 4.5 hrs

Eligibility for rtPA

Inclusion criteria

Clinical diagnosis of ischemic stroke

- Time frame for thrombolysis from onset of symptoms < 4.5 hrs
- If time of onset is unknown last time patient was known to be normal

Historical

- Stroke or head trauma last 3 months
- Any history of ICH
- Major surgery last 14 days
- MI last 3 months
- Non-compressible arterial puncture last 7 days
- For treatment from 3-4.5 hrs
- Age > 80 yrs
- Combination of stroke and diabetes

Clinical

- Spontaneously clearing stroke symptoms
- Minor neurological signs
- Seizure at stroke onset ? Postictal
- Symptoms suggestive of SAH
- Persistent BP elevation (> 185/110 mmHg)
- Active bleeding or acute trauma
- For treatment from 3-4.5 hrs
- NIH stroke scale > 25

Laboratory

- Platelets < 100,000 mm3</p>
- □ Serum glucose < 50 mg/dL (< 2.8 mmol/L)</p>
- INR > 1.7 if on oral anti- coagulants
- Elevated APTT

For treatment from 3-4.5 hrs

Use of oral anti- coagulants

Brain Imaging

- Hemorrhage
- Evidence of multilobar infarction (hypodensity
 - > 33% of cerebral hemisphere)

Intravenous Administration of rtPA

- Infuse 0.9 mg/kg (maximum dose 90 mg) over 60 minutes
 - 10% of the dose given as a bolus over 1 minute
- Admit the patient to ICU
- Neurological assessments every 15 minutes during the infusion
- Every 30 minutes for the next 6 hours then hourly until 24 hours
- BP every 15 minutes for the first 2 hours 30 minutes for the next 6 hours, then hourly
- Antihypertensive medications to maintain BP

Other Thrombolytic Agents

- Clinical trials of streptokinase were halted prematurely - high rates of haemorrhage
- Tenecteplase and Desmoteplase appear promising
- None of the other agents have been tested extensively

Thrombolysis in a nutshell

- Time frame for thrombolysis upto 4.5 hrs
- Effficiency of thrombolysis decreases with time
- Side effects increases with time
- Meticulous maintenance of BP needed if patient is thrombolysed
- Streptokinase should not be used

Anticoagulants

- Multiple trails Heparin & LMWH
- No benefit in -
 - Preventing early recurrent stroke
 - Halting neurological worsening
 - Improving outcomes
 - Increased risk of serious ICH
- Not recommended

Antiplatelet Agents

- Aspirin the only oral antiplatelet agent evaluated for ischemic stroke
- Two large trials
- Trend in reduction in death or disability
- Modest but statistically significant benefit from aspirin (pooled data)
- Prevention of recurrent events
- Ticlopidine, clopidogrel, dipyridamole not been evaluated in acute ischemic stroke

Antiplatelet Agents

- Aspirin (initial dose is 325mg) within 24 to 48 hours after stroke is recommended
- Do not give aspirin as an adjunctive therapy within 24 hours of thrombolytic therapy
- Clopidogrel not recommended

Hospital and General Acute Treatment

General Treatment

- Early mobilization
- Assess swallowing before starting eating or drinking
- NG or PEG feeds for hydration and nutrition in patients who cannot take food and fluids orally
- Suspected pneumonia or UTI should be treated with antibiotics

General Treatment

- Anticoagulants for treatment of immobilized patients to prevent DVT
- Patients who cannot receive anticoagulants
 - Aspirin

- Intermittent external compression devices
- Prophylactic administration of antibiotics is not recommended
- Indwelling bladder catheters should be avoided if possible

Acute Neurological Complications

Neurological Complications

- Brain Edema & Increased ICP
- Hemorrhagic Transformation
- Seizures

THANK YOU

Committed to Healing, Devoted to Caring

Copyright-Apollo Bramwell Hospital For any queries or for more information, Please call us on: (230) 605 1000 or email us on info@apollobramwell.com Apollo Bramwell Hospital, Royal Road, Moka, Mauritius

> www.apollobramwell.com A member of the British American Investment Group of Companies